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ABSTRACT

The coupling of enyne-imines with Fischer carbene complexes leads to the formation of alkenylpyrrole derivatives. Maximum yields of pyrrole
adducts were obtained using N,N-dimethylhydrazones. A mechanism involving alkyne insertion followed by nucleophilic attack of the imine
nitrogen at the intermediate alkenylcarbene complex was proposed.

In a recent publication, the coupling of Fischer carbene
complexes (1, Scheme 1) with either enyne-aldehydes (e.g.,
2) or ketones to produce vinylfuran derivatives (e.g.,3) was
reported.1 In a related study, the analogous preparation of
vinylisobenzofurans from the coupling of Fischer carbene
complexes with variouso-alkynylbenzaldehyde derivatives
was reported.2 In this manuscript, extension of these studies
to the preparation of pyrroles (e.g.,5) from Fischer carbene
complexes and enyne-imines (e.g.,4) is reported.3,4 In a
process similar to that invoked for furan formation, coupling
of enyne-imines with carbene complexes will afford vinyl-
carbene complex intermediate6, which can then undergo

nucleophilic attack by nitrogen at the carbene carbon to
afford pyrrole5 (E-isomer)5 after loss of chromium from
intermediate7. Synthesis of pyrroles from imine-alkynes has
precedent;6 however, the conversion of4 to 5 is unique in
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that formation of an exocyclic carbon-carbon bond occurs
simultaneously with closure of the pyrrole ring.

Prior to initiation of these studies, a concern was that direct
coupling of the carbene complex and imine functionalities
would interfere with the desired initial alkyne insertion.
Previously reported ground-state reactions for imines and
Fischer carbene complexes include aldol-like processes7 and
nucleophilic attack of the imine nitrogen at the carbene
carbon.8 Use of imines of minimal basicity (R4 is electron-
withdrawing) was initially deemed optimal because these side
reactions would be less likely and these imines are electroni-
cally similar to the aldehyde carbonyl groups successfully
employed in the furan synthesis. These compounds will be
less optimal, however, in the key ring-closure step (conver-
sion of6 to 7) because nucleophilicity at nitrogen is reduced.
However, related compounds were found to be optimal for
formation of pyrrolidine derivatives by intramolecular cou-
pling of amines and group VI vinylidene complexes.9

General synthetic protocols for the preparation of enyne-
imines are depicted in Scheme 2. The choice of synthetic

route for the preparation of enyne-imines4 depends primarily
on the identity of the R2 and R3 substituents. Compounds
where R2 and R3 * H or where R2 ) aryl, R3 ) H were
prepared from ketones8.10 Compounds where R2 ) alkyl
and R3 ) H were prepared fromR,â-unsaturated aldehydes

14.11 Compounds where R2 ) H and R3 ) alkyl/aryl were
prepared from propargyl alcohol (10).12 Compounds where
R2 and R3 ) H were prepared from ethyl propiolate (12).13

A variety of imines were treated with carbene complex1;
the results are depicted in Scheme 3 and Table 1. Initial
studies focused onN-sulfonyl imines (entries B and C). The
initially formed enol ether-pyrrole derivatives5 were unstable
with respect to air oxidation and were hydrolyzed to the
corresponding ketones16 for characterization purposes.
Coupling ofN-tosyl imine4B with methylcarbene complex
1 led to the desired pyrrole derivative16B in only 37% yield.
The N-methanesulfonyl imine4C afforded a similar result.
Electron-rich imines were next investigated as a result of
the limited success using electron-deficient imines. The
simpleN-benzyl imine4D (entry D) was far less efficient
and afforded pyrrole derivative in only 9% yield. No other
identifiable products were obtained from these coupling
reactions.

Enyne-hydrazone derivatives of4 were prepared so that
imines at both extremes of the basicity scale could be
evaluated.14 Reactions employing this imine were far more
efficient and led to theN-aminopyrrole derivatives. Coupling
enyne-hydrazone with carbene complex1 led toN-aminopy-
rrole derivative16A in considerably higher yield (entry A,

(5) This stereochemistry is generally obtained in chromium carbene-
alkyne couplings. McCallum, J. S.; Kunng, F. A.; Gilbertson, S. A.; Wulff,
W. D. Organometallics1988,7, 2346-2360.
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(c) Kel’in, A.; Sromek, A. W.; Gevorgyan. V.J. Am. Chem. Soc.2001,
123, 2074-2075.

(7) Hegedus, L. S.; McGuire, M. A.; Schultze, L. M.; Chen, Y.;
Anderson, O. P.J. Am. Chem. Soc.1984,106, 2680-2687.

Scheme 2a

a (i) PBr3/DMF/CHCl3; (ii) R1CtCH/(PPh3)2PdCl2/CuI/Et3N/
THF; (iii) R4NH2 (/TiCl4 if R4 ) Ts); (iv) R3MgBr/CuI, then I-Cl;
(v) ClCOCOCl/DMF/Et3N/CH2Cl2; (vi) NaI/HOAc; (vii) Br2/
CH2Cl2; (viii) DIBAL-H.

Scheme 3

Table 1. Synthesis of Pyrroles through Coupling of
Enyne-imines with Fischer Carbene Complexes

entrya R1 R2 R3 R4 yield 16b (%)

A Bu Ph H NMe2 62
B Bu Ph H Ts 37
C Bu Ph H Ms 35
D Bu Ph H CH2Ph 9
E Bu Bu H NMe2 64
F H Bu H NMe2 59c

G Bu H H NMe2 70
H Bu H Et NMe2 74
I Bu H allyl NMe2 64
J Bu -(CH2)4- NMe2 36
K Bu -(CH2)3- NMe2 25c

a Table entry letters define substituents for compounds4-16. b Isolated
yield of material that is pure by NMR and chromatographic analysis.c The
hydrolysis step was omitted; the yield is for compound5.
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62%) than analogous imine derivatives in entries B-D. The
imine nitrogen is far more basic and presumably more
nucleophilic in this system. Stabilization of the carbene
complex intermediate6 by the amine nitrogen lone pair might
also play a role in the higher yields obtained from theN,N-
dimethylhydrazone.

Structurally diverseN,N-dimethylhydrazone derivatives of
enyne4 were prepared, and their subsequent reaction with
carbene complex1 was examined (entries E-K). The
reaction appears to be quite general with respect to substitu-
tion on the alkene and alkyne and led to monosubstituted
(entry G), 1,2-disubstituted (entries A, E, F), and 1,3-
disubstituted (entries H and I)N-aminopyrrole derivatives
in good yields. The trisubstitutedN-aminopyrrole derivatives
in entries J and K were obtained in considerably lower yield.
These highly electron-rich compounds rapidly turned dark
colors upon prolonged exposure to air, and thus the low yield
in these cases might be attributed to product instability.

As a further test of the efficiency of pyrrole formation in
entries J and K, the coupling of enyne-hydrazone4K with
carbene complex1715 was tested (Scheme 4). As expected,
the initially formed pyrrole18K undergoes an intramolecular
Diels-Alder reaction followed by aminonitrene extrusion16

to afford the phenanthrene derivative20K. The reaction is
quite efficient and affords dehydro-steroid product20K in
68% yield. The reaction employing the six-membered ring
analogue4J proceeded similarly; however, the nitrogen
bridge remained intact under the reaction conditions, leading
to compound19J in 72% yield. The differing stability of
the nitrogen bridge in compounds19Jand19K is somewhat
surprising. The efficient formation of19Jand20K suggests
that pyrrole formation in entries J and K is efficient and that
the low yields are likely due to difficulty in isolating the
extremely electron-rich pyrroles produced in these two
examples.

In conclusion, the conversion of enyne-imines (4) to
pyrroles (5,16) has been demonstrated for a variety of

substrates differing in the degree of alkyl substitution on the
alkene and alkyne substituents. Optimal yields have been
obtained usingN,N-dimethylhydrazones. These reactions lead
to N-aminopyrrole derivatives, which to date have been
synthesized primarily from either reaction of 1,4-dicarbonyl
derivatives with hydrazines17 or from reaction of RCHdCH-
NdN-COR derivatives with enolates.18 N-Aminopyrrole
derivatives have proven to be highly useful for cycloaroma-
tization reactions16 and can be converted to simple pyrroles
through reduction.19 Further investigation of the scope of this
novel pyrrole-forming reaction and the synthetic potential
of the pyrrole products is currently underway in this
laboratory.
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